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We propose to integrate dark-state based localization techniques into a neutral atom quantum computing
architecture and numerically investigate two specific schemes. The first scheme implements state-selective
projective measurement by scattering photons from a specific qubit with very little cross talk on the other atoms
in the ensemble. The second scheme performs a single-qubit phase gate on the target atom with an incoherent
spontaneous emission probability as low as 0.01. Our numerical simulations in rubidium (Rb) atoms show that
for both of these schemes a spatial resolution at the level of tens of nanometers using near-infrared light can be
achieved with experimentally realistic parameters.

I. INTRODUCTION

Over the last two decades, the interest in quantum com-
puting has been continually growing due to the possibility of
solving difficult computational problems efficiently [1]. The
principles of quantum computing have now been demonstrated
using different physical qubits, each with various advantages
and drawbacks, such as trapped ions [2], superconducting
qubits [3, 4], quantum dots [5, 6], nitrogen-vacancy centers [7],
and single photons [8]. In this paper, we will focus on address-
ing several challenges in neutral atom quantum computing.
Neutral atoms have made great strides over the last decade
towards a scalable quantum computing architecture [1, 9–16].
Single atoms can be trapped using microscopic dipole traps,
and can be individually measured and addressed. Quantum
information can be stored in the stable hyperfine states of the
ground electronic level. Single qubit gates can be applied using
microwave pulses [17–19] or focused two-frequency Raman
light [20, 21]. Finally, two-qubit gates are achieved by exciting
the atoms to Rydberg states with a large principle quantum
number (typically n > 60), and utilizing the dipole-dipole
interaction [22].

Scalability requires that gate errors are sufficiently low to
be compatible with error correcting codes. Recent progress on
both theory and experiment suggests that neutral atoms will be
able to reach fidelity sufficient for error correction. For single
qubit gates, experiments have already shown gate fidelities
> 0.9999 [19]. For two-qubit Rydberg gates detailed theory
has shown that fidelity > 0.999 is possible, accounting for r
atomic structure details and atomic recoil effects [23–26]. Al-
though experiments are still far from the theoretical prediction,
several groups have now demonstrated Rydberg state medi-
ated entanglement with fidelity well above 90% in long lived
hyperfine ground states [27–30]. In particular, two-qubit gate
fidelities exceeding 98%[30] and a three-qubit Toffoli gate[27]
have been demonstrated, as well as multi-qubit entanglement
and implementation of several quantum algorithms using neu-
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tral atom arrays [28, 29]. Near term technical improvements
in lasers, optical control, and cooling to reduce imperfections
in Rydberg excitation, will likely lead to two-qubit gates and
entanglement in the hyperfine basis, with a fidelity that is suffi-
cient for error correction.

Despite this great progress, there are still outstanding chal-
lenges that need to be overcome in neutral atom quantum
computing [10, 31, 32]. Even with high fidelity gates, im-
plementation of cross-talk free qubit measurements (or qubit
resetting [33]) which are required for error correction, is an
outstanding challenge for neutral atom qubits. Hyperfine state
selective projective measurements are typically performed by
collecting fluorescent photons using a cycling transition. How-
ever, the photons scattered from a specific atom can be reab-
sorbed by neighboring atomic qubits causing errors as high as
4% for realistic experimental conditions. This challenge can,
in principle, be overcome by globally shelving all the other
atoms in the array to a state not interacting with the fluorescent
light [34, 35]. However, this requires global operations on
every qubit in the neighborhood of the measured atom, which
is slow and adds to the error rate.

Another challenge in neutral atom arrays is the required
high optical power of the trapping light. Due to the large
overhead of quantum error correction, it is anticipated that from
100-1000 physical qubits may be needed for each protected
logical qubit in a future universal computer. This implies
that machines capable of beyond classical calculations based
on several hundred logical qubits, may require 104 to 105

or more physical qubits. Present approaches based on two-
dimensional arrays of optical traps with interatomic spacing
of d ∼ 5 µm require >100 Watts of optical trapping power
to reach such large numbers. The approach described in the
following allows for spacing of d ∼ 0.5 µm, thereby reducing
power requirements by a factor of 100, which will enable arrays
with > 105 qubits using only a few Watts of trapping light.

To address these challenges, we propose to integrate dark-
state based localization techniques into a neutral atom quantum
computing architecture. It is now well-understood that the
dark state of electromagnetically induced transparency (EIT)
can be used to achieve a spatial resolution that can be much
smaller than the wavelength of light. As we discuss below,
the key idea is to use the spatial sensitivity of the dark state
to the intensity of the coupling laser and tightly localize the
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coherent population transfer between the Raman levels. This
approach was first theoretically proposed in Refs. [36–38] and
was experimentally demonstrated in [39–43]. A related two
dimensional scheme was proposed in Ref. [44]. Very recently,
EIT-based measurement in an ensemble without disturbing
the quantum information has been considered as a promising
method for error correction [45]. In this paper, we will focus
on an array of qubits that are trapped in a standing-wave lattice,
with a distance of d ∼ λlattice/2 = 0.5 µm between adjacent
qubits. Due to their small spacing, it is difficult to address
individual qubits using traditional optical means [46]. We
will then discuss how variations of the dark-state-localization
approach can be used to (i) perform state-selective projective
measurement by scattering photons from a specific qubit with
very little cross talk on the other atoms in the ensemble, (ii)
implement a single-qubit phase gate with low spontaneous
emission rate and with nanoscale position resolution.

The paper is organized as follows. In the model section, we
discuss the dark state and EIT-based localization. In the results
section, we will give details of the two schemes and show the
results of the numerical simulations. In our simulations, we
numerically solve the density matrix equations using realistic
experimental parameters.

II. MODEL

A. EIT and the Dark State

Electromagnetically Induced Transparency (EIT) is a tech-
nique where the destructive quantum interference between
different coupled energy levels of atoms are used to make a
laser-dressed medium transparent to the probe light [47, 48].
The absorption cancellation is because the atomic system is
driven to the dark state which is a coherent superposition of
the two lower Raman levels with no component in the excited
radiating level. In addition to EIT, the dark state is also central
to coherent population trapping (CPT) and stimulated-Raman
adiabatic passage (STIRAP) [49, 50]. The preparation of the
dark state typically involves a pair of near-resonant fields both
of which are coupled to an atomic lambda system. The Hamil-
tonian for the system can be written as H = H0 +Hint, where
H0 is the Hamiltonian of the bare state atom andHint describes
the interaction between the atoms and the applied lasers. The
interaction Hamiltonian under the rotating wave approximation
is:

Hint =

 0 0 ΩP

0 −2(∆1 −∆2) ΩC

ΩP ΩC −2∆1

 . (1)

Noting Fig. 1a, the quantities ΩP and ΩC are the Rabi frequen-
cies for the probe and the coupling lasers. The frequency detun-
ings are defined as ∆1 = ωe−ωa−ωP and ∆2 = ωe−ωb−ωC .
The eigenvectors of the Hamiltonian of Eq. (1), are

∣∣a+〉 = sin θ sinφ |a〉+ cosφ |e〉+ cos θ sinφ |b〉 , (2)

(a)

(b)

Figure 1. (a) The three level Λ configuration for EIT. Probe laser
ΩP couples level |a〉 with |e〉 and the coupling laser couples the
level |b〉 to the level |e〉. (b) Qualitative description of dark-state
based localization of population transfer. With atomic system driven
to the dark state, population transfer from the ground level |a〉 to
|b〉 (black curve) can be localized to very small spatial scales. For
comparison, the spatially varying coupling laser intensity (red curve)
is also plotted.

∣∣a0〉 = cos θ |a〉 − sin θ |b〉 , (3)

∣∣a−〉 = sin θ cosφ |a〉 − sinφ |e〉+ cos θ cosφ |b〉 . (4)

where the quantities θ and φ are defined as:

tan θ = ΩP

ΩC
, (5)

tan 2φ =
√

Ω2
P + Ω2

C

∆1
. (6)

The state
∣∣a0〉 does not have any component in |e〉, and is the

dark-state. This state is smoothly connected to the ground state
and can be prepared adiabatically using the counter-intuitive
pulse sequence, i.e., the coupling laser beam turning on before
the probe laser [47, 51]. In the dark state based localization
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approach, the key idea is to use the spatial sensitivity of the
dark state to the intensity of the coupling laser beam. From
Eq. (3), it can be shown that the population of state |b〉 is
|〈b|a0〉|2 = |ΩP |2/(|ΩP |2+|ΩC |2), and has a highly nonlinear
dependence on coupling laser intensity. Specifically, in a region
where the coupling laser goes through an intensity minimum,
the population of state |b〉 can be localized very tightly. As
discussed in Refs.[38, 43], an easy approach to implement
this scheme would be to use a coupling laser beam with a
standing-wave spatial profile. This is schematically shown in
Fig. 1b. It can be shown that, for a spatially uniform probe
laser, the full-width-half-maximum of the transfer will be,
FWHMtransfer ≈ λ(ΩP /ΩC,max), where ΩC,max is the Rabi
frequency of the coupling laser at the peak of the standing
wave.

Using the dark state for the localization of population trans-
fer provides key advantages compared to other approaches
[37, 52–67]. The atoms are coherently transferred, keeping
their phase relationship with other qubits intact. If the evolu-
tion is sufficiently adiabatic, the dark state can be prepared with
little population in the excited radiative state, which reduces
heating and decoherence from spontaneous emission. Because
the excitation is coherent, dark-state-based localization can be
achieved using short and intense laser pulses. Finally, due to
the robust nature of adiabatic preparation, the localization is
insensitive to fluctuations in experimental parameters, such as
frequency and intensity jitters of the probe and coupling lasers.
The protocols that we discuss below for state-selective readout
and single-qubit phase-gate fully utilize these advantages

III. RESULTS

Figure 2 shows the specific system that we will be fo-
cusing on throughout the rest of the paper. We consider a
neutral atom based quantum computing architecture using
87Rb atoms and take clock states as the logical qubit states:
|0〉 ≡ |F = 1,mF = 0〉 and |1〉 ≡ |F = 2,mF = 0〉. For
simplicity and clarity, we focus on a one-dimensional geom-
etry, although the protocols that we discuss extend to two-
dimensions in a straightforward way. The atoms are trapped in
a lattice using a far-off-resonant dipole trap. Nanoscale state-
selective measurement and single-qubit gates are achieved us-
ing a spatially varying coupling laser beam at a wavelength near
the D2 line of λD2 = 780 nm. The coupling laser standing-
wave is obtained by using a counter-propagating beam-pair.
The intensity minimum of the coupling-laser beam is inter-
ferometrically aligned to the qubit that is to be addressed.
We choose the wavelength of the dipole trap laser such that
the coupling laser is at a maximum at the nearby qubits:
λlattice = 3

2λD2 = 1.17 µm. This results in a qubit spac-
ing of λlattice/2 = 0.59 µm. To simplify the discussion, we
will take the probe laser beam to be focused sufficiently tightly
so that it overlaps with only the three qubits in the array (i.e.,
to a spot size of ∼ λlattice = 1.17 µm). In what follows, we
will focus on nanoscale addressing and manipulation of the
central qubit with negligible cross-talk to the neighboring two
qubits.

F=1

F=2

0

1

lattice
potential

coupling
laser

lattice beam lattice beam

atom array
coupling lasercoupling laser

probe
laser

Figure 2. Nanoscale measurement and addressing scheme. The atoms
are trapped in a one-dimensional optical lattice which is obtained
using a counter-propagating beam pair(the lattice potential is shown
in dashed black curve). The intensity minimum of the coupling laser
of EIT (solid red curve) is aligned to the qubit of interest. The coupling
laser standing-wave is also obtained using a counter-propagating beam
pair. The probe laser beam is focused sufficiently tightly so that it
overlaps with only the three qubits in the array (i.e., to a spot size of
∼ λlattice = 1.17 µm). In our simulations, we focus on nanoscale
addressing and manipulation of the central qubit with negligible cross-
talk to the neighboring two qubits. The logical qubit states are the
clock states of the ground hyperfine manifold: |0〉 ≡ |F = 1,mF =
0〉 and |1〉 ≡ |F = 2,mF = 0〉.

A. State-selective single-qubit readout

As mentioned above, state selective single-qubit readout
remains one of the outstanding challenges in neutral atom
quantum computing. This is difficult to achieve even in arrays
where the atoms are spaced by ∼10 microns and individual
addressing is achieved by tightly focused laser beams. State-
selective projective measurement is traditionally performed
by collecting fluorescent photons using a cycling transition.
However the photons scattered from a specific atom in the
array can be reabsorbed, thereby causing error rates as high as
4% at neighboring qubits ∼ 10 microns away. This challenge
can be overcome by globally shelving remaining qubits in the
array to a state not interacting with the fluorescent light [10,
31]. However, this then requires global operations on every
qubit in the ensemble, which is slow and adds to the error
rate. In this section, we discuss a dark-state localization based
measurement scheme that largely overcomes these challenges
even when the spacing between adjacent qubits is 0.59 µm.

Figure 3 shows the relevant energy level diagram for the
measurement scheme that we envision. The goal is to perform
a projective measurement of the logical |0〉 state of only the
addressed qubit, while scattering as few photons from the other
qubits as possible. A probe laser beam polarized along the
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Figure 3. Level scheme in 87Rb for nanoscale-level single-qubit
readout, which consists of two parallel EIT channels. The coupling
laser with Rabi frequency ΩC couples the states |F = 1,mF = ±1〉
and |F ′ = 0,mF ′ = 0〉 and the probe laser with Rabi frequency ΩP

couples the states |F = 1,mF = 0〉 and |F ′ = 0,mF ′ = 0〉.

quantization axis (π polarization) couples |F = 1,mF = 0〉
to |F ′ = 0,mF ′ = 0〉 state of the D2 line. The two beams
forming the coupling laser standing wave are linearly polarized
orthogonal to the quantization axis, thereby containing equal
amounts of σ+ and σ− light. As shown in Figure 3, the result
is two Λ schemes, forming two parallel EIT channels.

The measurement protocol is as follows. During the EIT
pulse, the intensities of the beams forming the coupling laser
standing-wave are balanced so that the intensity vanishes at
the minimum. At the node of the coupling laser (which is
the position of the qubit whose state is to be measured), the
atom scatters probe photons and is pumped into one of |F =
1,mF = 1〉 or |F = 1,mF = −1〉 states (since EIT is not
established). The other atoms in the array experience EIT and
evolve into the dark state. As shown in Fig. 4, the coupling laser
is turned on before and turned-off after the probe beam. As a
result, the other qubits in the array adiabatically evolve from the
|0〉 state into a coherent superposition and then evolve back to
|0〉. This is achieved while maintaining negligible population
in the excited |F ′ = 0,mF ′ = 0〉 state and therefore with
low spontaneous emission. After the EIT (probe and coupling)
pulse sequence, the atom at the node is left in one of the
|F = 1,mF = 1〉 or |F = 1,mF = −1〉 states. To pump
this atom back, we turn on the coupling laser beam, but now
with a slight intensity imbalance in the beam-pair, so that
there is some light at the intensity minimum. Note that this
second coupling-only pulse does not interact with the other
atoms in the array (since all the other atoms are in state |0〉).
The end result after this pulse sequence is that the atom at
the node scatters ∼2 photons, while other atoms in the array
scatter little if efficient EIT is achieved. To ensure arrival of a
photon at the detector, the above pulse sequence can be applied
multiple times to scatter a sufficient number of photons from
the addressed qubit.

One of the key advantages of this approach is that due to the
presence of EIT at the other atoms, there is negligible proba-
bility of scattered photons to be reabsorbed within the array. If

the coupling laser intensity is much larger than the probe laser
intensity at the positions of the other atoms, the majority of
the dark state remains in state |0〉. As a result, the probability
of reabsorption is significant only for photons scattered on the
probe transition (π polarized). But these photons are scattered
only when there is large coupling intensity at the other atoms,
which means the atoms are transparent to these photons due to
EIT.

In this approach, the crosstalk and the error on the adjacent
qubits is limited by non-adiabatic corrections to the dark state.
This can be kept quite low, by ensuring that (δω/ΩC)2 (the
quantity δω is the bandwidth of the probe pulse) is sufficiently
small at the neighboring qubits. However, δω cannot be set ar-
bitrarily low, since the bandwidth of the probe pulse essentially
determines the measurement time.

t (μs)

Ω
𝑐
𝑡
,Ω

𝑝
(𝑡
),

 Ω
𝑠𝑓
(𝑡
)

Figure 4. The Rabi frequencies for the coupling laser ΩC , (solid,
orange curve) and probe laser ΩP , (solid, blue curve) as a function of
time. The lasers are turned on adiabatically using a counter-intuitive
pulse sequence: i.e., the coupling laser is turned on before the probe
laser. Second coupling-only pulse is for optically pumping the atom
back to the logical |0〉 state.

Figure 5 shows the results of a simulation where we numeri-
cally solve the 4× 4 density matrix for the scheme of Fig. 3
using quite reasonable parameters. The equations for the time
evolution of the density matrix, as well as their derivation is
outlined in Appendix A. In these simulations, we take probe
pulses with a duration of 6 µs, a probe Rabi frequency of
ΩP = 0.2Γa (the quantity Γa = 2π × 6.06 MHz is the D2
line decay rate). In the false-color two-dimensional plot, the
coupling laser Rabi frequency at the peak of the standing wave
is varied from ΩC,max = Γa to ΩC,max = 18Γa. We take
a combined photon collection efficiency of 3% (a numerical
aperture of NA=0.5 of the initial lens and 40% detection ef-
ficiency from the first lens to the photon counter). Figure 5
shows the total number of scattered photons (in log scale) as a
function of position. The atom at the node scatters 33 photons
(which produces a mean detected photon number of 1), and this
scattering is spatially localized very strongly. The three insets
show the number of scattered photons as a function of position
for ΩC,max = Γa, ΩC,max = 10Γa, and ΩC,max = 18Γa,
respectively. For these three cases, The population transfer is
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Figure 5. Dependence of the localization with respect to the maximum coupling laser frequency ΩC,max and the relevant cross sections of the 2D
plot with ΩC,max = 1Γa, ΩC,max = 10Γa, ΩC,max = 18Γa. With FWHMs of 58.5 nm’s, 6.1 nm’s 4.1 nm’s, respectively.

localized to a spatial region with a FWHM of 58.5 nm, 6.1 nm,
and 4.1 nm, respectively. Even tighter localization of photon
scattering can be achieved with the use of higher values for
the coupling laser Rabi frequency at the peak of the standing
wave.

We note that, scattering 33 photons requires ∼ 33/2 ∼ 16
pulse sequences. This sets the measurement time for the nu-
merical simulations of Fig. 5 to be ∼ 16× 6 ∼ 100 µs. Faster
measurement times can be achieved with the use of shorter
pulses, which would increase the bandwidth, δω, resulting in
higher nonadiabatic corrections to the dark state (and there-
fore higher crosstalk) for fixed probe and coupling laser Rabi
frequencies. This can be overcome by increasing the probe
and coupling laser Rabi frequencies while keeping their ra-
tio constant (in order to achieve a similar amount of spatial
localization).

B. The effect of initial spread of the atomic position

The numerical simulations of Fig. 5 assume the ideal case
of no spread of the initial atomic position (i.e., the atom is
assumed to be a point particle at a fixed position). In a realistic
experiment, there will be an initial spread of the atomic posi-
tion due to the finite depth of the optical trap and the atomic
temperature. This initial spread of the atomic position will
broaden the results that are presented in Fig. 5. We calculate
this broadening to be on the order of tens of nanometers, with

trap depth of the lattice potential in the 1-10 mK range and
atoms cooled to the ground state of the trap (with the wave-
length of the lattice potential fixed at λlattice = 1.17 µm, and
therefore the qubit spacing fixed at λlattice/2=0.59 µm).

Figure 6 shows our numerical calculation of this effect for
the specific case of a trap depth of 5 mK. Here, we assume
the atom to be in the ground state of the trapping potential,
calculate the initial probability spread for the atomic position,
and convolve the result that we obtain in Fig. 5 with this initial
probability distribution. The result of Fig. 6 is obtained for
the case of ΩC,max = 18Γa, i.e., for the conditions of the
third inset in the numerical simulation of Fig. 5. The FWHM
spread for the scattered photons is increased to∼23.8 nm (from
4.1 nm). This is still well below the diffraction limit of the
addressing probe and coupling lasers, which has a wavelength
of λD2 = 780 nm.

C. The effect of photon scattering on the nearby qubits

In the simulations of Fig. 5, we numerically calculated the
density matrix equations due to the probe and coupling lasers
only. These results show that within the assumptions of these
simulations, the addressed qubit can scatter many photons
while keeping the scattering from the nearby qubits at very
low values. We have also qualitatively argued that the photons
scattered from the the targeted atom will not be reabsorbed by
the nearby atoms due to the presence of EIT. In this section we
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Figure 6. The photon count plot for ΩC,max = 18Γa when we
assume the atom to be in the ground state of a trapping potential
with the trap depth of 5 mK. We obtain this result by convolving the
numerical calculation for the third inset of Fig. 5, with the probability
distribution of the atomic position due to the finite spread of the
wavefunction. The FWHM of the localization for the scattered number
of photons is increased to 23.8 nm.

will make this argument quantitative by including the effect of
the radiated field from the addressed qubit on the nearby atoms
explicitly. For this purpose, we first calculate the electric field
at the position of the neighboring qubit, due to the scattered
photons from the targeted atom. Consider a radiating dipole
(the target qubit), with a dipole moment, ~p. Working in a
spherical coordinate system and positioning the addressed atom
at r = 0, the vectorial electric field due to this radiating atom
is:

~Edipole = k3

4πε0
{ 1
kr

(r̂ × ~p)× r̂

+
(

1
k3r3 − i

1
k2r2

)
[3r̂(r̂ · ~p)− ~p]} . (7)

Here, the quantity r̂ is the unit vector that connects the obser-
vation point to the radiating atom and k = 2π/λ is the optical
k-vector. As the targeted atom is radiating, depending on which
specific transition the excited atom decays into, the orientation
of the dipole vector ~p can be different. A photon that is emitted
into the |F ′ = 0,mF ′ = 0〉 → |F = 1,mF = 0〉 transi-
tion will be linearly polarized while a photon emitted into the
|F ′ = 0,mF ′ = 0〉 → |F = 1,mF = ±1〉 transitions would
be circularly polarized. Scattered photons at these different po-
larizations would then introduce perturbations to the probe and
coupling laser frequencies at the position of the neighboring
qubit. We calculate these time varying perturbations, which we
refer to as ΩP,dipole(t) and ΩC,dipole(t), by multiplying the
radiated electric field at the position of the neighboring qubit
with respective matrix elements of the transitions.

We have simulated this effect by adding the time depen-
dent dipole emission to the density matrix equations at the
nearby qubit which is r = 0.59 µm away. At this distance the
peak values for the perturbation to the Rabi frequencies are
ΩP,dipole = 2π × 159 kHz and ΩC,dipole = 2π × 159 kHz,
respectively. With these added dipole perturbations to the Rabi
frequencies for the probe and coupling laser beams, we then
calculate the change in the photon scattering rate at this other

F=1

m'=0

m=-1 m=0 m=1

F'=0
Δ

Ω!

Ω"
Ω#$%&'

Figure 7. Four level structure F ′ = 0,mF = 0 and F = 1,mF =
0,±1with the relevant coupling and probe lasers, ΩC and ΩP . In
addition, there is a detuning of ∆ and new Stark-Shift Laser with
Rabi Frequency Ωstark.

Figure 8. Plot of the Rabi frequencies for the phase gate scheme
with the minimal spatial dependence, ΩC,max = 8Γa. All of the
frequencies are turned on adiabatically, where the turn order is ΩC

(Solid, orange curve), ΩP (Solid, blue curve) and Ωstark (Solid, green
curve)

qubit, when compared with the simulations of Fig. 5. We find
that the results that we have reported in Fig. 5 only change
at the level of 10−6 or less at the position of the adjacent
neighboring qubit. This is remarkably low and is due to the
robustness of EIT to the exact values of the probe and coupling
laser intensities.

D. Single-qubit Phase Gate

In this section we discuss how to implement a single-qubit
phase gate with the truth-table |1〉 → |1〉, |0〉 → exp{(iϕ)}|0〉.
The phase gate, although not universal by itself, does provide
for arbitrary single qubit rotations on targeted qubits when com-
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Figure 9. Dependence of the localization of the phase with respect to the maximum coupling laser frequency ΩC,max and the relevant cross
sections of the 2D plot with ΩC,max = 16Γa, ΩC,max = 128Γa, ΩC,max = 208Γa. With FWHMs of 324.51 nm’s, 78.33 nm’s, 60.57 nm’s,
respectively.

bined with global π/2 and−π/2 rotations about an axis on the
equator of the Bloch sphere which can be readily implemented
with microwaves[18, 28].

Our approach is similar to what was discussed in Ref. [38].
The relevant energy level diagram and the pulse sequences
for the involved laser beams are shown in Figs. 7 and 8. To
implement a single-qubit phase-gate, we are interested in co-
herent manipulation of the atom near the node of the coupling
laser spatial profile using EIT. For this purpose, similar to
the localization scheme that we discussed above, we need to
ensure adiabatic evolution at all points along the coupling-
laser standing wave. We therefore introduce an imbalance in
the intensities of the beam-pair forming the coupling laser,
which then results in a non-vanishing intensity minimum. If
the peak coupling laser intensity is much higher than the uni-
form probe intensity, then there is localization of the transfer
to states |F = 1,mF = 1〉 and |F = 1,mF = −1〉. Only
near the intensity minimum of the coupling laser profile, there
is large population transfer from the logical |0〉 state to these
states during EIT. We then adiabatically turn on a far-detuned
laser beam, which Stark-shifts the |F = 1,mF = 1〉 and
|F = 1,mF = −1〉 states by an amount Ω2

stark/(2∆). The
Stark-shift causes a phase accumulation of Ω2

stark/(2∆)T (the
quantity T is the duration of the Stark-shift laser pulse). But
only near the intensity minimum where there is substantial
transfer to the |F = 1,mF = 1〉 and |F = 1,mF = −1〉
states, the wavefunction acquires this phase.

The Rabi frequencies for the laser pulses as a function of
time are plotted on Fig. 8. To ensure adiabatic preparation,
the coupling laser beam is turned-on before the probe laser
beam. The Stark-shift laser is present only after EIT has been
established and the system has evolved into the dark state (i.e.,
after the probe and coupling laser beams are turned-on).

Fig. 9 shows the result of density-matrix numerical sim-
ulations for the single-qubit phase-gate scheme. Here, the
maximum of the coupling laser Rabi frequency is varied to un-
til ΩC,max = 208Γa, while the value of the coupling laser
Rabi frequency at the intensity minimum is kept fixed at
ΩC,min = 8Γa. We set the uniform probe laser Rabi frequency
to be ΩP = 8Γa. The parameters of the Stark shift-laser
beam are adjusted to obtain a phase-shift value of π/4 radians.
Specifically, we choose the Rabi frequency of the Stark-shift
laser to be Ωstark = 1.6Γa, set it’s detuning at ∆ = 200Γa,
and take it’s duration to be T = 15µs. The durations of the
probe and coupling laser pulses as shown in Fig. 7 are 25µs
and 35µs, respectively.

The 2D plot in Fig. 9 is a false-color plot of the applied phase
as the Rabi frequency of the coupling laser at the intensity
maximum, ΩC,max is varied. The three insets show the number
of scattered photons as a function of position for ΩC,max =
16Γa, ΩC,max = 128Γa, and ΩC,max = 208Γa, respectively.
For these three cases, The population transfer is localized to
a spatial region with a FWHM of 324.5 nm, 78.3 nm, and
60.6 nm, respectively.
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Figure 10. The total incoherent spontaneous emission probability
during the duration of the applied phase gate (solid red line) as well
as the accumulated phase in radians (solid blue line) with respect
to position. At the position of the target atom there is 0.82 radians
phase accumulation while the spontaneous emission probability is
kept ≈ 0.01. Lower spontaneous emission rates can be achieved by
increasing the detuning, ∆, of the Stark-shift laser from the excited
level (at the expense of an increase in its Rabi frequency so that the
applied phase Ω2

stark/(2∆)T remains unchanged)

In this scheme, the fidelity of the single-qubit phase-gate is
limited by spontaneous emission (and therefore decoherence)
of the excited radiating level, |F ′ = 0,mF ′ = 0〉. This level
is populated due to (1) non-adiabatic corrections to the dark
state, and (2) the far-detuned excitation because of the Stark-
shift laser. As discussed above, the non-adiabatic corrections
to the dark state can be kept low by keeping the ratio of the
bandwidth of the probe and coupling laser pulses to their Rabi
frequencies to be small. The excitation of the radiating level
due to the Stark-shift laser can be kept small, by keeping a
large value for the detuning of the Stark-shift laser beam, ∆.

For the numerical simulations of Fig. 9, the spontaneous
emission rate due to the non-adiabatic corrections to the dark
state is negligible (at the level of 0.1%). This is because of the
high values for the probe and coupling laser Rabi frequencies.
The spontaneous emission rate is instead limited by the excita-
tion to the radiating level (followed by incoherent spontaneous
emission) due to the Stark shift laser. In Fig. 10, we plot the
total spontaneous emission probability during the whole time
duration of the applied phase gate, as a function of position
for the conditions of the third inset of Fig. 9 (i.e., for a cou-
pling laser Rabi frequency of ΩC,max = 208Γa at the intensity
maximum). Here, we calculate the total spontaneous emission
probability is calculated for each spatial point as

∫ T

0 ρ44Γadt
(the integration is over the whole time duration of the simu-
lation). For completeness, we also plot the applied phase (in
linear scale) as a function of position. At the intensity mini-
mum of the coupling laser (i.e., at the position of the addressed
qubit), the applied phase is about π/4, with a spontaneous
emission probability of approx0.01. Lower spontaneous emis-
sion rates can be achieved by increasing the detuning, ∆, of
the Stark-shift laser from the excited level (at the expense of
an increase in its Rabi frequency so that the applied phase

Ω2
stark/(2∆)T remains unchanged).

IV. CONCLUSIONS

Neutral atoms have made great strides over the last decade
towards a scalable quantum computing architecture. Despite
this great progress, there are still outstanding challenges that
need to be overcome in neutral atom quantum computing. Even
with high fidelity gates, implementation of cross-talk free qubit
measurements, which are required for error correction, is an
outstanding challenge for neutral atom qubits. Another chal-
lenge in neutral atom arrays is the required high optical power
of the trapping light. To address these challenges, we have pro-
posed to integrate dark-state based localization techniques into
a neutral atom quantum computing architecture and suggested
two schemes, one for state-projective measurement, and other
for single-qubit phase gates. Density-matrix numerical simula-
tions in 87Rb atoms show that both approaches can achieve a
spatial resolution well into the nanoscale regime.
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Appendix A DENSITY MATRIX EQUATIONS

For the four level EIT schemes that were discussed above,
we numerically simulate the systems by calculating the time
evolution of the 4 × 4 density matrix ρ. The Von Neumann
equation for the density matrix ρ, without any relaxation,
is [68],

ρ̇ = − i
~

[H, ρ] . (8)

In order to include decay and dephasing processes, we add
the relaxation matrix Γ with the following matrix elements into
the Von Neumann equation:

〈n|Γ |m〉 = γnδmn. (9)

The total equation of motion with the relaxation matrix of
above is:

ρ̇ = − i
~

[H, ρ]− 1
2{Γ, ρ}. (10)

In order to simplify the notation that will follow, for
the four level scheme of Fig. 3, we define the states
|F = 1,mF = −1〉 → |a〉, |F = 1,mF = 0〉 → |b〉,
|F = 1,mF = −1〉 → |c〉 and |F ′ = 0,m′F = 0〉 → |e〉. We
define the relevant energies for these states to be ~ωa, ~ωb, ~ωc,
and ~ωe, respectively. The states |a〉 and |c〉 are coupled to the
excited state |e〉 with a coupling laser with a Rabi frequency of
ΩC and |b〉 state is coupled to the excited state |e〉 with a probe
laser with the Rabi frequency ΩP . The unperturbed (zero field)
Hamiltonian for the four atomic levels is:

H0 =

~ωa 0 0 0
0 ~ωb 0 0
0 0 ~ωc 0
0 0 0 ~ωe

 . (11)

The dipole interaction Hamiltonian, that describes the inter-
action of the four levels with the probe and coupling lasers (
frequencies ΩC and ΩP ) is:

~µ · ~E = −1
2


0 0 0 ΩCe

−iωC t

0 0 0 ΩP e
−iωP t

0 0 0 ΩCe
−iωC t

ΩCe
iωC t ΩP e

iωP t ΩCe
iωCt 0


(12)

Note that ωP and ωC are the phase differences on the rabi
lasers. Whereas, ωa, ωb, ωc and ωe are the transition frequen-
cies. When one combines the dipole interaction Hamiltonian
and the unperturbed (zero-field) Hamiltonian, one gets the total
Hamiltonian:

H = 1
2


~ωa 0 0 −ΩCe

−iωC t

0 ~ωb 0 −ΩP e
−iωP t

0 0 ~ωc −ΩCe
−iωC t

−ΩCe
iωC t −ΩP e

iωP t −ΩCe
iωCt ~ωe

 .
(13)

We next use the Hamiltonian of Eq. (12) in the Von Neumann
equation of Eq. (9) and write the differential equations for the
elements of the density matrix ρ(t). Below, the subscripts of
ρ are consistent the state labeling that was described in the
previous paragraph. For example, the diagonal density matrix
element for the state |a〉 is ρaa. The complete set of equations
for the density matrix elements are:

ρ̇aa = iΩC

2 eiωCtρ∗ae −
iΩC

2 e−iωC tρae − Γ1ρaa

+ Γeρee

3

ρ̇ab = iΩC

2 eiωCtρ∗be −
iΩP

2 e−iωP tρae

− ρab

2 (Γ1 + Γ2) + iρab(ωb − ωa)

ρ̇ac = iΩC

2 eiωCtρ∗ce −
iΩC

2 e−iωC tρae

− ρac

2 (Γa + Γc) + iρac(ωc − ωa)

ρ̇ae = iΩC

2 eiωCtρ∗ee −
iΩC

2 e−iωCtρaa −
iΩP

2 e−iωP tρab

− iΩC

2 e−iωC tρac −
ρae

2 (Γa + Γe)

+ iρae(ωe − ωa)

ρ̇bb = iΩP

2 eiωP tρ∗be −
iΩP

2 e−iωP tρbe − Γ2ρbb

+ Γeρee

3

ρ̇bc = iΩP

2 eiωP tρ∗ce −
iΩC

2 e−iωCtρbe

− ρbc

2 (Γb + Γc) + iρbc(ωc − ωb)

ρ̇be = iΩP

2 eiωP tρ∗ee −
iΩC

2 e−iωC tρ∗ab

− iΩP

2 eiωP tρbb −
iΩC

2 eiωCtρbc −
ρbe

2 (Γb + Γe)

+ iρbe(ωe − ωb)

ρ̇cc = iΩC

2 eiωCtρ∗ce −
iΩC

2 e−iωC tρce − Γcρcc

+ Γeρee

3

ρ̇ce = iΩC

2 eiωCtρee −
iΩC

2 e−iωCtρ∗ac −
iΩP

2 eiωP tρ∗bc

− iΩC

2 eiωCtρcc −
ρae

2 (Γa + Γe)

+ iρae(ωe − ωa)

ρ̇ee = iΩC

2 e−iωC tρae + iΩP

2 e−iωP tρbe

+ iΩC

2 e−iΩCtρce

− iΩC

2 ρ∗ae −
iΩP

2 ρ∗be −
iΩC

2 eiωCtρ∗ce − Γ4ρee

(14)
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Where the terms ρiis define the relevant density matrix el-
ement of ρ. When one transforms to the rotating frame, the
terms transform to

ρ̃ae = ρaee
−iωCt

ρ̃be = ρbee
−iωP t

ρ̃ce = ρcee
iωCt

ρ̃ab = ρabe
−i(ωC−ωP )t

ρ̃bc = ρbce
i(ωC−ωP )t.

(15)

Thus, the differential equations for the terms of the density
matrix can be updated as,

˙̃ρaa = iΩC

2 ρ̃∗ae −
iΩC

2 ρ̃ae − Γ1ρ̃aa + Γeρ̃ee

3
˙̃ρab = iΩC

2 ρ̃∗be −
iΩP

2 ρ̃ae −
ρ̃ab

2 (Γa + Γc)

+ iρ̃ab(ωb − ωa − ωC + ωP )

˙̃ρac = iΩC

2 ρ̃∗ce −
iΩC

2 ρ̃ab −
ρ̃ac

2 (Γa + Γc)

+ iρ̃ac(ωc − ωa)

˙̃ρae = iΩC

2 ρ̃ee −
iΩC

2 ρ̃aa −
iΩP

2 ρ̃ab −
iΩC

2 ãc

− ρ̃ae

2 (Γa + Γe) + iρ̃ae(ωe − ωa − ωb)

˙̃ρbb = iΩP

2 ρ̃∗be −
iΩP

2 ρ̃be − Γ2ρ̃bb

+ Γ4ρ̃ee

2 (Γa + Γe)

˙̃ρbc = iΩP

2 ρ̃∗ce −
iΩC

2 ρ̃ce −
ρ̃bc

2 (Γb + Γc)

+ iρ̃bc(ωc − ωb − ωP + ωC)

˙̃ρbe = iΩP

2 ρ̃ee −
iΩC

2 ρ̃∗ab −
iΩP

2 ρ̃bb −
iΩC

2 ρ̃bc

− ρ̃be

2 (Γb + Γe) + iρ̃be(ωe − ωb − ωP )

˙̃ρcc = iΩC

2 ρ̃∗ce −
iΩC

2 ρ̃ce − Γ3cρ̃cc + Γeρ̃ee

3
˙̃ρce = iΩC

2 ρ̃ee −
iΩC

2 ρ̃∗ac −
iΩP

2 ρ̃∗bc −
iΩC

2 ρ̃cc

− ρ̃ce

2 (Γc + Γe) + iρ̃ce(ωe − ωc − ωC)

˙̃ρee = iΩC

2 ρ̃ae + iΩP

2 ρ̃be + iΩC

2 ρ̃ce

− iΩC

2 ρ̃∗ae −
iΩP

2 ρ̃∗be −
iΩC

2 ρ̃∗ce − Γ4ρ̃ee.

(16)

Since the energies of |a〉 and |c〉 are the same, ωa = ωc

holds true. Thus, we define the decouplings,

∆1 = ωe − ωa − ωC

∆2 = ωe − ωb − ωP
(17)

Considering these decouplings, our differential equations
become,

˙̃ρaa = iΩC

2 ρ̃∗ae −
iΩC

2 ρ̃ae − Γ1ρ̃aa + Γeρ̃ee

3
˙̃ρab = iΩC

2 ρ̃∗be −
iΩP

2 ρ̃ae −
ρ̃ab

2 (Γa + Γc)

+ iρ̃ab(∆1 −∆2)

˙̃ρac = iΩC

2 ρ̃∗ce −
iΩC

2 ρ̃ab −
ρ̃ac

2 (Γa + Γc)

˙̃ρae = iΩC

2 ρ̃ee −
iΩC

2 ρ̃aa −
iΩP

2 ρ̃ab −
iΩC

2 ãc

− ρ̃ae

2 (Γa + Γe) + iρ̃ae(ωe − ωa − ωb)

˙̃ρbb = iΩP

2 ρ̃∗be −
iΩP

2 ρ̃be − Γ2ρ̃bb + Γ4ρ̃ee

2 (Γa + Γe)

˙̃ρbc = iΩP

2 ρ̃∗ce −
iΩC

2 ρ̃ce −
ρ̃bc

2 (Γb + Γc)

+ iρ̃bc(∆2 −∆1)

˙̃ρbe = iΩP

2 ρ̃ee −
iΩC

2 ρ̃∗ab −
iΩP

2 ρ̃bb −
iΩC

2 ρ̃bc

− ρ̃be

2 (Γb + Γe) + iρ̃be(ωe − ωb − ωP )

˙̃ρcc = iΩC

2 ρ̃∗ce −
iΩC

2 ρ̃ce − Γ3cρ̃cc + Γeρ̃ee

3
˙̃ρce = iΩC

2 ρ̃ee −
iΩC

2 ρ̃∗ac −
iΩP

2 ρ̃∗bc −
iΩC

2 ρ̃cc

− ρ̃ce

2 (Γc + Γe) + iρ̃ce(ωe − ωc − ωC)

˙̃ρee = iΩC

2 ρ̃ae + iΩP

2 ρ̃be + iΩC

2 ρ̃ce −
iΩC

2 ρ̃∗ae

− iΩP

2 ρ̃∗be −
iΩC

2 ρ̃∗ce − Γ4ρ̃ee.

(18)

After getting the rotating-frame coupled differential equa-
tions, a fourth order Runge-Kutta Algorithm [69, 70] is used
to numerically solve these equations. The solutions to these
equations are used in Section III.
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